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Is There an Optimal Substrate Geometry for Wetting?
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Within a 1+1-dimensional SOS type model with a periodic rough substrate, we
show that the differential wall tension, which governs wetting, has a maximum
as a function of a certain aspect ratio of the substrate. This result is based on
a low-temperature expansion leading, in a first approximation, to Wenzel's law
for the wall tension and allowing us to study the corrections to this law. It
implies that the contact angle is minimum for a substrate with the corresponding
aspect ratio. Our results are in agreement and explain recent numerical simulations.

KEY WORDS: SOS models; Wenzel's law; wetting; roughness; Winterbot-
tom's construction; interfaces.

1. INTRODUCTION

Wetting phenomena have a long standing history starting with Young
more than a century ago. His famous equation describes the behaviour of
the contact angle % of a sessile liquid drop B in equilibrium with the vapor
phase A on top of a substrate W:

{AB cos %={AW&{BW (1.1)

where the { 's represent the different surface tensions appearing in the
problem. This equation can be derived for chemically pure substrates in
several ways, such as by a mechanical argument relative to the balance of
forces, or by a thermodynamical argument related to the minimum of the
free energy of the system ABW. Young's equation is also a direct consequence
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of Winterbottom's construction which describes the equilibrium shape of a
sessile drop in terms of the three different tensions that appear in the
problem.

Implicitly, it is assumed in these approaches that the surface of the
substrate is flat. Several studies have been devoted to take into account
heterogeneities within the surface. In particular, it is known macroscopi-
cally that the roughness of the substrate will induce some change in the
wall surface tensions, and hence on the difference {AW&{BW . This change
is described in the literature by Wenzel's equation:(12)

{AW&{BW is proportional to r

where r denotes the ratio between the area L of the surface of the substrate
and that of its projection L0 on the tangential plane at the contact point

r=L�L0

We are here interested in the the microscopic analysis of these
phenomena in the case of 1+1-dimensional solid-on-solid models. We use
two SOS models in fact: one to describe the microscopic interface between
the substrate W and the fluids A and B, and another one to describe the
microscopic interface between A and B. For simplicity, we assume here that
the two models have the same elementary spatial period.

First we notice that Winterbottom's construction and the associated
contact angle equations, even in the the case of microroughness present in
the model, still hold true. This can be proved by an appropriated extension
of the theory developed in refs. 5 and 10. Then we analyze the corrections
to Wenzel's law versus the geometry of the pores or the protrusions in our
model extending in that way previous results obtained for the Ising model
in refs. 1 and 2. This research clarifies some preliminary results got in that
direction with the help of numerical simulations.(11) Finally, for a fixed
roughness, we compare the influence of different geometries of the substrate
on wetting properties. We show that there is an optimal geometry with a
given roughness for a certain class of simple substrates.

The paper is organized as follows. Section 2 is devoted to the presenta-
tion of the model. In Section 3, we present low temperature expansions for
the wall tension and in Section 4 we show that the differential wall tension,
which governs wetting, has a maximum as a function of a certain aspect
ratio of the substrate.

2. THE MODEL

To define the model, we consider an SOS model where to each site i
of the one dimensional lattice we associate an integer variable hi ,
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i=0, 1,..., N, which represents the height of the interface between i and
i+1. For a configuration h=[h0 ,..., hN], we draw the horizontal lines at
height hi between i and i+1 (i=0,..., N&1), and the vertical lines at each
site i, between hi&1 and hi . We use 1 to denote the corresponding
polygonal line (see Fig. 1). Its length is |1 |=�N

i=1 (1+|hi&hi&1 |).
We want here to study this interface on top of a rough substrate with

roughness r. The substrate is thus represented in our case by a periodic
SOS interface W, with periodicity a, and height configuration h� =h� 0 ,..., h� N

where h� i=h� a+i , so that

r=1+
�a

i=1 |h� i&h� i&1 |
a

The energy of a configuration, in a box of length N (which will be
taken as a multiple of a), is given by

HN(1, W )=JAB |1"(1 & W )|+JAW |1 & W |+JBW |W"(1 & W )| (2.1)

Here 1 is above W, which means hi�h� i for all i. The set 1"(1 & W ) is
relative to the AB microscopic interface, 1 & W defines the part of the sub-
strate in contact with A, and W"(1 & W ) is relative to the contact zone
between B and W.

This system describes a system of droplets of a phase B inside a
medium A on top of the wall W. JAB , JAW , and JBW are the energies per
unit length of the corresponding microscopic interfaces (see Fig. 1).

Fig. 1. A configuration of the interface 1 on the substrate W.
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Let us first introduce the different tensions appearing in the problem.
The surface tensions associated to the macroscopic interfaces AB and AW
are defined as follows:

{AB(%)= lim
N � �

&
cos %
;N

log :*
1

exp(&;JAB |1 | ) (2.2)

where the sum �* runs over all configurations satisfying h0=0 and
hN=N tan %, and

{AW= lim
N � �

&
1

;N
log :

-

1

exp[&;HN(1, W )] (2.3)

where the sum �- runs over all configurations such that h0=h� 0 and
hN=h� N . Finally, for the interface BW, we have

{BW=rJBW (2.4)

Let us point out that the anisotropy of the SOS model considered here
leads to an orientation dependent surface tension for the AB interface. That
the limits exist follows from standard arguments, see e.g., refs. 4 and 9.

These surface tensions actually satisfy anisotropic Young's equation

{AB(%) cos %&{$AB(%) sin %={AW&{BW (2.5)

which reduces itself to Young's equation (1.1) for isotropic media.
The proof of (2.5) as well as the proof of the Winterbottom's construc-

tion for the model under consideration may be obtained by an appropriate
extension of the approach presented in refs. 5 and 10 in the case of a flat
substrate. Let us also point out that the proofs may also be extended to the
cases of finite range interactions between the interface AB and the wall W.

3. LOW TEMPERATURE EXPANSION OF THE WALL TENSION

This section is devoted to study the behavior, at low temperatures of
the surface tension {AW , defined by Eq. (2.3). Two cases may appear: either
the ground state corresponds to the microscopic interface 1 that coincides
with the substrate W, or the ground microscopic interface 1 leaves holes
between 1 and W. We shall consider here the first case. The other cases
where the ground state is not the wall W will be discussed elsewhere.(6)

They would lead in particular, as a first approximation, to Cassie's law, (3)

instead of Wenzel's law which will be obtained here.
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We introduce the energy difference

H$N(1, W )=HN(1, W )&HN(W, W ) (3.1)

so that the surface tension {AW reads

{AW=rJAW+ lim
N � �

&
1

;N
log ZN (3.2)

where

ZN=:
1

e&;H$N (1, W ) (3.3)

Our first step is to write ZN as the partition function of a gas of elementary
excitations, simply also called excitations, which can be viewed as micro-
scopic droplets over the substrate. These excitations are defined as follows.
Given 1 and W, we consider the symmetric difference

2=(1 _ W )"(1 & W ) (3.4)

We decompose 2 into maximal connected components 2=$1 _ $2 _ } } } _ $n

called excitations. Two components are said connected if they are con-
nected considered as subsets of R2. A set [$1 , $2 ,..., $n] of mutually disjoint
excitations is called an admissible family of excitations. Then there exists
a microscopic interface 1, such that 2=$1 _ $2 _ } } } _ $n satisfies (3.4),
namely

1=(2 _ W )"(2 & W ) (3.5)

This correspondence between admissible families of excitations and SOS
configurations is one-to-one.

The energy difference H$N in terms of families of excitations is

H$N(1, W )=E($1)+ } } } +E($n)

where

E($)=JAB |$"($ & W )|&(JAW&JBW) |($ & W )| (3.6)

Then

ZN= :
2=[$1 ,..., $n]/4N

`
n

i=1

e&;E($i) (3.7)
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where the sum runs over admissible families of excitations whose projection
is included in the infinite cylinder 4N=[x=(x1 , x2) # R2 : 0�x1�N ] and
the product is taken equal to 1 if 2=<.

Because the configuration 1=W, in which the microscopic interface is
following the wall, is the ground state of the system, we assume that
H$N(1, W )>0 for all 1 and N, or equivalently, that

E($)>0 for all $ (3.8)

In fact it is enough that this condition is satisfied for N=a, that is for all
excitations belonging to 4a .

We next consider arbitrary families of elementary excitations non
necessarily mutually compatible and in which a given excitation can appear
several times. To any such family [$1 ,..., $n] a graph G($1 ,..., $n) is asso-
ciated in such a way that to each excitation corresponds (in a one-to-one
way) a vertex of the graph, and there is an edge joining the vertex corre-
sponding to $i and $j whenever $i and $j are not compatible or coincide.
We introduce the clusters C as the arbitrary families of excitations for
which the associated graph G($1 ,..., $n) is connected (this means that the
excitations draw a connected set in R2). Then we get

log ZN= :
C/4N

8T (C) (3.9)

where the sum runs over all clusters whose excitations belong to 4N . The
truncated functions 8T are defined by

8T ($1 ,..., $n)=
a($1 ,..., $n)

n !
`
n

i=1

e&;E($i) (3.10)

a($1 ,..., $n)= :
G/G($1 ,..., $n)

(&1)l(G) (3.11)

Here the sum runs over all connected subgraphs G of G($1 ,..., $n), whose
vertex coincide with the vertex of G($1 ,..., $n), and l(G) is the number of
edges of the graph G. If the cluster C contains only one excitation then
a($)=1.

To express condition (3.8) in terms of the coupling constants, we need
a description of the substrate. Let 1 (z) be the horizontal line at height z,
that is hi=z for all i. For any z # Z such that infi h� i+1�z�sup i h� i , the
substrate W and the line 1 (z&=), 0<=<1, intersect in a finite number of
points, W & 1 (z&=)=[A1 , A2 ,..., Ap], ordered in such a way that the first
coordinates ik (k=1,..., p) of Ak satisfy i1<i2< } } } <ip . The part of W
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between the two points Bk=(ik , z) and Bk+1=(ik+1 , z) lies either below
or above or on the the substrate W. It is called a well in the first case and
we denote it by wk(z), and a protrusion in the second case. We let

\=max
z, k

|wk(z)|
ik+1&ik

=max
z, k

|$k(z) & W |
|$k(z)"($k(z) & W )|

where $k(z) is the excitation $k(z)=wk(z) _ [ik , ik+1]. Then condition
(3.8) reads

JAB>\(JAW&JBW) (3.12)

Hereafter it will be more convenient to denote by W the infinite periodic
wall whose restriction to 4N is given by the previous heights h� 0 ,..., h� N .
Notice that the expression (3.6) of the energy of excitation remains
unchanged. We denote by Wa the restriction of W to 4a .

Theorem 3.1. Assume that condition (3.12) is satisfied. Then, for
any ;>;0=1.9(1+\)[JAB&\(JAW&JBW)]&1, the following series, giving
the wall-medium surface tension, is absolutely convergent

{AW=rJAW&
1

;a
:

b # Wa

:
C % b

8T (C)
|C & W |

(3.13)

Proof. The proof of formula (3.13) as well as that of the absolute
convergence of the series can be established following ref. 7 (Chapter 4) in
which the low temperature contours of the Ising model were considered in
the role played here by the excitations (see also ref. 8). The first ingredient
is the following lower bound on the energy:

E($)�(1+\)&1 [JAB&\(JAW&JBW)] |$| (3.14)

This bound follows from (3.6) and the inequality ( |$ & W |�|$"($ & W )| )�\
(valid for any excitation $) which is a consequence of an easy geometrical
argument used with condition (3.12). Inequality (3.14) together with the
fact that the number of polygons (or of excitations $) of length l passing
to a given point is less then 3l ensures in particular the convergence of
the series �$ % b e&;E($), (for any bond b) as soon as ; equals some ;$0 . The
convergence of the cluster expansion needs furthermore the existence of a
positive real-valued function +($) such that

e&;E($)+($)&1 exp { :
$$ i $

+($)=�e&:<1 (3.15)
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where the sum runs over excitations $$ incompatible with $ (this relation,
denoted by $$ i $, means that $$ does not intersect $. Since the lengths |$|
are even, with minimal value |$min |=4, and �$$ i $ +($)�|$| �$$ % b +($$),
choosing +($)=(3et)&|$|, we see that inequality (3.15) is satisfied if

;(1+\)&1 [JAB&\(JAW&JBW)]>log 3+t+
e&4t

1&e&2t

The value t0&0.61 that minimizes the function t+[e&4t�(1&e&2t)]
provides the corresponding ;0 given in the theorem. The expression (3.13)
then follows from (3.2) and (3.9). K

Theorem 3.13 implies Wenzel's law at low enough temperature

2{={AW&{BW=r(JAW&JBW)+corrections

In the next section we study the corrections to Wenzel's law.

4. COMPARISON OF DIFFERENT GEOMETRIES

We shall now restrict to some specific walls W. Namely, we assume
h� i=0 for i=0,..., c&1 and h� i=b for i=c,..., a&1 (1�c�a&1), see
Fig. 3.

We will denote by 2{(r, c)={AW&{BW the difference between the
surface tensions corresponding to the roughness r and the parameter c. The
roughness has the value r=1+2b�a and is independent of c. In the next
Theorem we compare (varying the parameter c) different geometries with
the same roughness.

Theorem 4.1. Let J=JAB and J$=JAW&JBW and assume that
J&(2b+1) J$#2(b+1) K1>0. Define ;0=(b+1)(1.9(a+c)+0.56)�M,
where M=min[(b+1) J$, 2(b+1) K1 , |J$&(b+1) K1 |]. Then, for any
;>;0 , we have

(a) 2{(r, 1)<2{(r, c), if 2�c�a&1

(b) 2{(r, c)<2{(r, c+1), if 1�c�c0&1

(c) 2{(r, c)>2{(r, c+1), if c0�c�a&2,

where c0=(a+5)�2 if a is odd, c0=a�2+2 if a is even and J$<(b+1) K1 ,
and c0=a�2+3 if a is even and J$>(b+1) K1 .
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This result is illustrated graphically in Fig. 2. The plot is generated
from Eqs. (4.17) and (4.25) below for certain specific values of the
parameters: J=0.1, J$=0.01, b=1, a=15, and ;=2; the corrections, i.e.,
=1 , =2 , and the third term of the R.H.S. of (4.25) are neglected.

It means that for a given roughness r, there is an optimum value for
the wall tension at c=c0 . In other words, for c=c0 , the associated contact
angle % for the sessile drop will be minimum. These results confirm the data
obtained by numerical simulations in ref. 11. It was indeed observed that
2{(r) for 2d random substrates with a fixed roughness r remains between
the ``single'' protrusion and ``single'' hole case, see Fig. 8 in ref. 11. On the
basis of Theorem 4.1, we have in fact 2{(r, c=1)�2{(r, c)�2{(r, c0).
Since on the other hand we have 2{(r, c=a&1)&2{(r, c=c0), we under-
stand that single protrusions and single holes will be good approximations
for the upper and lower limits of the wall tension as already indicated in
ref. 11.

Let us also point out here that the numerical simulations seem to
indicate that the first order correction to Wenzel's law is already enough
to describe the wall tensions up to one half of the 2d Ising critical tem-
perature.

That this optimal geometry also holds for more general systems
remains up to now an interesting open question.

Fig. 2. Plot of the wall tensions difference 2{(r, c) as function of the parameter c.
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Before proving Theorem 4.1, we give the following

Lemma 4.1. Assume that cJ&(c+2b) J$#2(c+b) Kc>0. Then,
for ;�2(1.9+:�4)(b+c)[cJ&(c+2bJ$)]&1, :>0 we have,

:
C % (0, 0)
C % (0, c)

8T (C)=[1+=(c)] e&;[cJ&(c+2b) J$] (4.1)

where

|=(c)|�e2&(c+b)+' _e&2(;Kc&&)+
2

1&e&;(J+J$) \e&;(J+J$)+
e&2(;J$+&)

1&e&2(;J$+&)+&
&=1.9+:�4, '=log

e&4t0

1&e&t0

e&:

1&e&:=log
0.2e&:

1&e&:

Proof. We first observe that all excitations satisfy max$( |$ & W |�
|$"($ & W )| )�(c+2b)�c, i.e., \=1+2b�c, so that equality (3.14) reads

E($)�
1

2(b+c)
[cJ&(c+2b) J$] |$|=Kc |$|

Under the condition, ;Kc�1.9+:�4, :>0, the cluster expansion converges
and moreover

:
|C |�m

C & b{<

|8T (C )|�exp[(&;Kc+&) m+'] (4.2)

where for a cluster C=[$1 ,..., $n] we use |C |=|$1 |+ } } } +|$n | to denote
its length. To prove (4.2), we write for a cluster C=[$1 ,..., $n] of length at
least m, |8T (C )|�(1�n !) e&(;Kc&;1Kc) ma($1 ,..., $n) >m

i=1 e&;1E($i). Then we
use that condition (3.15) is satisfied if for any $, ;Kc�log 3+t+
(e&4t�(1&e&2t))+:�|$|, i.e., for ;Kc�1.9+:�4 by choosing + and t as in
the proof of Theorem 3.1. Under (3.14), one knows, c.f. ref. 7, that
�C % $ 8T (C)�+($) e&:�(1&e&:). We use finally �$ % b +($)�e&4t�(1&e&2t)
=0.2 when t=0.61 to get (4.2).

We let $0 be the excitation corresponding to the interface 10 , $0=
(10 _ W )"(10 _ W ), where 10 is given by the height h i=b for i=0, 1,...,
c&1 and hi=h� i otherwise. That is $0 is the boundary of the rectangle
R=[(x, y) # R2 : 0�x�c, 0, � y�b], see Fig. 3. Its energy is: E($0)=
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cJ&(c+2b) J$. Denote by W(b1 , b2) the part of the wall between the
points B1=(0, b1) and B2=(c, b2). Then,

:
C : C & W#W(b, b)

8T (C )=e&;[cJ&(c+2b) J$]+ :
C : C & W#W(b, b)

|C |�2(c+b+1)

8T (C) (4.3)

Indeed the first term of the R.H.S. of (4.3) corresponds to the excitation $0

and the second terms run over the other clusters containing W(b, b) the
length of them being at least |$0 |+2=2(c+b+1). By (4.2), this term is
bounded as follows:

:
C : C & W#W(b, b)

|C |�2(c+b+1)

|8T (C )|�exp[&2(c+b+1)(;Kc&&)+'] (4.4)

Next we observe that for all excitations whose intersection with the wall
is W(b1 , b2) satisfy max$( |$ & W |�|$"($ & W )| )�(c+b1+b2)�(c+|b1&b2| ).
Hence the bound on the energy is improved as follows:

E($)�
(c+|b1&b2 | ) J&(c+b1+b2) J$

(2c+b1+b2+|b1&b2 | )
|$|

when $ & W=W(b1 , b2). All the associated clusters have length |C |�2c+
b1+b2+|b1&b2 |. Therefore

:
C : C & W=W(b1 , b2)

|8T (C )|�exp[&;[(c+|b1&b2 | ) J&(c+b1+b2) J$]]

_exp[(2c+b1+b2+|b1&b2 | ) &+'] (4.5)

Thus,

:
b1+b2�2b&1

b1�1, b2�1

:
C : C & W=W(b1 , b2)

|8T (C)|

�2[1&e&;(J+J$)]&1

_(exp[&;(c+1) J+;(c+2b&1) J$+2&(c+b)+']

+[1&e&2(;J$+&)]&1

_exp[&;cJ+(c+2b&2) J$+2&(c+b&1)+']) (4.6)

The first term inside the parenthesis comes from the summation over
1�b2�b1&1, b1=b and the second term from the summation over
1�b2�b1 , 1�b1�b&1.
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Observing that the sum of 8T (C ) over clusters C intersecting the
points (0, 0) and (0, c) is the sum of (4.3) and (4.4), the proof follows by
taking into account the bound (4.4). K

Proof of Theorem 4.1. The previous lower bounds on the energy
can be improved for some excitations. Let 4(i, j)=[x=(x, y) # R2 :
i�x� j ] denote the infinite cylinder between the vertical lines x=i and
x= j. For the excitations included in the strips 4(1&a, c&1) and
4(1, a+c&1), one has max$( |$ & W |�|$"($ & W )| )�1, and thus by argu-
ing as in the proof of (3.14): E($)� 1

2 (J&J$) |$|. The associated clusters
satisfy thus:

:
|C | �m

C % b

|8T (C )|�exp {&
;
2

(J&J$) m+&m+'= (4.7)

For the excitations included in the strips 4(1, c&1) and 4(c, a), one has
|$ & W |� |$|�2&1. Therefore

E($)=J |$|&(J+J$) |$ & W |� 1
2 (J&J$) |$|+J+J$

and the associated clusters satisfy:

:
|C | �m

C % b

|8T (C )|�exp {&
;
2

(J&J$) m&;(J+J$)+&m+'= (4.8)

We let $1 be the excitation corresponding to the interface 11 ,
$1=(11 _ W )"(11 _ W ), where 11 is given by the height hi=b+1 for
i=c&1,..., a&1, and hi=h� i otherwise (Fig. 3). Its energy is E($1)=

Fig. 3. The excitations $0 , $(k), and $1 translated by &a.
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(a&c+b+3) J&(a&c+b+1) J$ and |$1 |=2(a+b+c+2). We let
$(k)(x, y) denote the excitations of width k, height 1 (and length 2(k+1))
whose intersection with the wall is the segment [(x, y), (x+k, y)] (of
length k). Their energy when y=b or when y=0 and they do not intersect
the vertical part of the wall are: E (k)=k(J&J$)+2J.

Then we the decompose the sum involved in (3.13) as follows:

:
C & 4(0, a){<

8T (C )=S1(c)+S2(c)+S3(c) (4.9)

where

S1(c)= :
C/4(1, c&1)

8T (C )+ :
C/4(c, a)

8T (C )

S2(c)= :
C/4(1&a, c&1)

C & (0, 0){<

8T (C )+ :
C/4(1, a+c&1)

C & (0, c){<

8T (C )

S3(c)= :
C & (0, 0){<
C & (c, 0){<

8T (C)

Let us compare the differences Si (c)&Si (c+1), i=1, 2, 3. When a is even,
we have

S1(c)&S1(c+1)

={e&;c(J&J$)&2;J+R1(c)
&e&;(a&c+1)(J&J$)&2;J+R$1(c)

if c&2�a&c&2
if c&2�a&c

(4.10)

where

|R1(c)|�4 :
C/4(c, a)

|C |�2(c+2)

|8T (C )|�4e&;(c+2)(J&J$)&;(J+J$)+2(c+2) &+' (4.11)

|R$1(c)|�4 :
C/4(1, c)

|C |�2(a&c+3)

|8T (C )|�4e&;(a&c+3)(J&J$)&;(J+J$)+2(a&c+3) &+'

(4.12)

Indeed, there is a one�to�one correspondence between the clusters C of
base of size |C & W |=k occurring in S1(c) and S1(c+1) till k reach some
value. This value, when c&2�a&c&2 is precisely c, because in that case
there are clusters (of base of size c) which belong to 4(c, a) bot neither to
4(1, c&1) nor to 4(c+1, a). There is precisely one excitation $(c) of base
of size c (and length 2(c+1)) which belong to 4(c, a) bot neither to
4(1, c&1) nor to 4(c+1, a). Its energy is E (c)=c(J&J$)+2J and gives
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the corresponding term in (4.10). The other clusters have length |C |�
2(c+2). This gives the first bound on the reminder R1(c). The second
bound in (4.11) follows from (4.8). When c&2�a&c the argument works
in the opposite direction. The value k is a&c+1 and there is a corre-
sponding $(k) (of length 2(a&c+2) which belong to 4(1, c) but nor to
4(1, c&1) nor to 4(c, c&a). Its energy is (a&c+1)(J&J$)+2J and
provides the corresponding term in (4.10). The other clusters have length
|C |�2(a&c+3). This gives the bound on the reminder R$1(c), the second
inequality in (4.12) following from (4.8).

When a is odd:

e&;c(J&J$)&2;J+R1(c) if c&2�a&c&3

S1(c)&S1(c+1)={0 if c&2=a&c&1

&e&;(a&c+1)(J&J$)&2;J+R$1(c) if c&2�a&c+1

(4.13)

where 0 must be understood as �C�M 8T (C ) with M as large as we wish.
Indeed the same reasoning as for a even applies. In addition there is the
particular case c&2=a&c&1 where the width of the cylinder 4(1, c&1)
equals the one of 4(c&a&1) and the width of 4(c&a) equals the width
of 4(1, c). For S2(c), we have:

|S2(c)&S2(c+1)|

=|R2(c)|�2 :
C & (0, c){<
|C | �2(c+1)

|8T (C)|+2 :
C & (0, c){<

|C | �2(a&c+b+2)

|8T (C )|

�2e&;(c+1)(J&J$)+2(c+1) &+'

+2e&;(a&c+b+2)(J&J$)&;(J+J$)+2(a&c+b+2) &+' (4.14)

Indeed the clusters of minimal energy containing (0, c) and for which the
correspondence is not one-to-one are the excitations $(c)(0, 0) of length
2(c+1) and the excitation $1 of length 2(a&c+b+2). All other clusters
have length greater or equal than either |$(c)(0, 0)|+2 or than |$1 |+2. To
bound the first sum we used (4.7) and to bound the second sum we used
(4.8). Finally, by Lemma 4.1

S3(c)&S3(c+1)=(1+=$) e&;[cJ&(c+2b) J$] (4.15)

where

|=$|�|=(c)|+e&;(J&J$)(1+|=(c+1)| ) (4.16)
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Assume now that 2c�a+2 if a is even or 2c�a+3 if a is odd, then
from (4.10)�(4.16)

2{(c+1)&2{(c)= :
3

i=1

Si (c)&Si (c+1)

=&(1+=1) e&;(a&c+1)(J&J$)&2;J+(1+=2) e&;c(J&J$)+2;bJ$

(4.17)

where

|=1 |�4e&;(J&J$)+2(a&c+3) &+'+2e&;b(J&J$)+2(a&c+b+2) &+' (4.18)

|=2 |� |=$|+2e&;(J&J$)&2;bJ$+2(c+2) &+' (4.19)

Therefore for ; large the sign of (4.17) will be given by the sign of the
difference E (a&c+1) &E($0)=(a&c+1)(J&J$) +2J&c(J&J$)+2bJ$.
More precisely

2{(c+1)&2{(c)

�A _a+4
2

&c&
(b+1) K1&J$

J&J$
&

log( |1&|=1 | |�(1+|=2 | ))
2;(J&J$) & (4.20)

=A _a+5
2

&c&
(b&1) J$+2(b+1) K1

J&J$
&

log( |1&|=1 | |�(1+|=2 | ))
2;(J&J$) &

(4.21)

2{(c+1)&2{(c)

�B _a+4
2

&c+
J$&(b+1) K1

J&J$
&

log( |1+|=1 | |�(1&|=2 | ))
2;(J&J$) & (4.22)

=B _a+3
2

&c+
(b+1) J$

J&J$
&

log((1+|=1 | )�|1&|=2 | | )
2;(J&J$) & (4.23)

where A=2;(J&J$)(1+|=2 | ) e&;c(J&J$)+2;bJ$ and B=2;(J&J$)(1+|=1 | )
e&;(a&c+1)(J&J$)&2;J. On the other hand when 2c�a if a is even or
2c�a+1 if a is odd, we get from (4.10)�(4.16)

2{(c+1)&2{(c)�e&;c(J&J$)[e2;bJ$(1&|=$| )+e&2;J/(2c<a+1)

&2e&;(J&J$)+2(c+1) &+'&6e&;(3J&J$)+2(c+2) &+']

(4.24)
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Therefore, for a odd, inequality (4.21) proves statement (c) of the theorem
while (4.23) gives 2{((a+3)�2)<2{((a+5)�2), i.e., statement (b) for
c=(a+3)�2 the result for the other value following from (4.24), all this
provided ; is large enough as stated in the hypotheses of the theorem.
When a is even we can conclude only if J${(b+1) K1 . In this case, the
statement (c) follows from (4.20) while the statement (b) follows from
(4.22) and (4.24).

To find the lower bound on ;, we let =1(;M ) and =2(;M ) be respec-
tively the upper bounds on |=1 | and |=2 | obtained by replacing J$ by
M�(b+1) and K1 by M�2(b+1) in (4.18) and (4.19). We use also
Kc&&c�M�(b+1)&(a&1) &. Then, we take ;M�(b+1)=(a+b) &(:)+
(1�2)('(:)+:). The value of : giving the lower bound stated in the
theorem ensures that (1�2;M )[log[1+=1(;M )]&log[1&=2(;M )]]<1,
=1(;M )<1 and =1(;M )<1.

The above analysis leads also to:

2{(r, 1)=r(JAW&JBW)&
e&;(J&(1+2b) J$)

;a
+O(e&;(J&(2b&1) J$)) (4.25)

2{(r, a&1)=r(JAW&JBW)&
2e&2;(J&J$)

;a
/(a�3)+O(e&3;(J&J$)) (4.26)

The second term in the R.H.S. of (4.25) comes from the energy of the
excitation $0 for c=1 and the second term in the R.H.S. of (4.26) comes
from the energy of the excitation $(1)(0, 0). Relations (4.25) and (4.26) give
statement (a) and end the proof of Theorem 4.1. K

Notice that by (4.25) the first order term for the corrections of Wenzel's
law is given in the case c=1 by (&1�;a) exp[;[a(r&1)(JAW&JBW)&
JAB+JAW&JBW]] and thus decreases with the roughness r.
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